An electronic amplifier is a device for increasing the power of a signal. It does this by taking energy from a power supply and controlling the output to match the input signal shape but with a larger amplitude. In this sense, an amplifier may be considered as modulating the output of the power supply
Generally, an amplifier or simply amp, is any device that changes, usually increases, the amplitude of a signal. The relationship of the input to the output of an amplifier—usually expressed as a function of the input frequency—is called the transfer function of the amplifier, and the magnitude of the transfer function is termed the gain.
In popular use, the term usually describes an electronic amplifier, in which the input "signal" is usually a voltage or a current. In audio applications, amplifiers drive the loudspeakers used in PA systems to make the human voice louder or play recorded music. Amplifiers may be classified according to the input (source) they are designed to amplify (such as a guitar amplifier, to perform with an electric guitar), the device they are intended to drive (such as a headphone amplifier), the frequency range of the signals (Audio, IF, RF, and VHF amplifiers, for example), whether they invert the signal (inverting amplifiers and non-inverting amplifiers), or the type of device used in the amplification (valve or tube amplifiers, FET amplifiers, etc.).
A related device that emphasizes conversion of signals of one type to another (for example, a light signal in photons to a DC signal in amperes) is a transducer, a transformer, or a sensor. However, none of these amplify power.
Modest power audio amplifiers for driving small speakers or other light loads can be constructed in a number of ways. The first choice is usually an integrated circuit designed for the purpose. A typical assortment can be seen on this National Semiconductor page. Discrete designs can also be built with readily available transistors or op-amps and many designs are featured in manufacturers' application notes. Older designs employed audio interstage and output transformers but the cost and size of these parts has made them all but disappear. (Actually, when the power source is a 9 volt battery, a push-pull output stage using a 500 ohm to 8 ohm transformer is more efficient than non-transformer designs when providing 100 milliwatts of audio.) As a general rule, transformerless low power speaker projects will work better with 4.5 or 6 volt battery packs of AA, C, or even D cells than 9 volt rectangulars.
0 comments:
Post a Comment